
A Database System For Organizing Musique Concrète

Christopher Bailey

Abstract
When writing musique concrète, there may arise a question
of how to deal with a massive bank of heterogeneous
source sounds. One possible solution involves a simple,
powerful and flexible database engine built in FileMaker
Pro. A composer enters data about sounds in the collection
and then specifies musical gestures abstractly by creating
parametric profiles called models. Models, realized as
sequences of actual soundfiles via database queries, can be
written out as mix-files which can then be displayed,
modified, processed, and mixed with the Ardour mixing
application.

Keywords: musique concrète, database, Filemaker,
gesture, Ardour.

1.Introduction
An old teacher of mine once said that there were two
routes a composer could take with a composition: create a
lot of variety out of a small piece of material; or, take
maximally varied materials and try to find ways that those
materials can cohere and flow together, as if they, too,
arose from single source. When it comes to musique
concrète, I have always enjoyed the latter approach:
starting with a large bank of heterogeneous sounds, I
attempt to weave them into a coherent sound tapestry. This
paper is a about a tool I developed to help me do this. I
begin with some personal aesthetic history, then describe
the tool and give examples of its use, and finally discuss
some possible future developments.

2.Aesthetic Context
My early works in the musique concrète genre, Ow, My
Head and Duude, (both of which somehow managed to
sneak onto former ICMC programs), were composed in
1996 and 1997 respectively, and partake of the same
aesthetic approach. Both works used large banks of source
sounds (which I recorded myself), and involved little or no
sound processing. I was interested in coherence, but not
(necessarily) unity: it was more important to me that one
gesture led into another smoothly (or abruptly, if

appropriate), than that all gestures were derived from the
same basic bit of material. I was interested in the
possibility of creating new timbres solely from
superposition/combination and rhythmic arrangement of
unprocessed audio. Finally, I enjoy the way a sound can be
referential (we know what the source is), while at the same
time being an abstract part of a musical utterance (a “note”
in a “phrase”). Heavy processing eliminates the referential
function of a sound, and thus its dual functionality, leaving
only it’s abstract musical purpose. For some, (and for
myself, at certain times) this is desirable, but in most of my
works I aim for a situation where sounds can be heard
playing as many roles and fulfilling as many functions as
possible.

For both Ow, My Head, and Duude, I began with
between 300-500 source soundfiles. Members of the
collections varied profusely: vocal sounds, speech,
banging, scraping, shaking, a few ‘field recordings’ (e.g.
crickets, beaches, practice room hallways), and so forth.
For a given work, the sounds were related only in that they
were all recorded in the same geographical location (for
example, in and around a certain house or apartment.)

The works were, for the most part, written by stringing
together a sequence of smaller sub-mixes, with just a few
musical gestures in each. I would compose these sub-
mixes by first assembling a more-or-less random set of
soundfiles, and then attempting to arrange the gathered
soundfiles in time and stereo space to create a musical
gesture. By musical, I mean a gesture that coheres, that
sounds more like a whole entity than a mere sequence of
randomly juxtaposed sounds.

This was what I refer to as a “junk sculpture” paradigm
of composition: give me some sonic detritus, and I will
make music out of it for you. I enjoy this way of working
very much, but I was, at times, a bit uncomfortable with it.
I sometimes wanted to be able to work in a more
deterministic fashion. I began to realize, especially during
the composition of Duude, that ‘deterministic’ might refer
to the ability to conceive a musical gesture, somewhat
abstractly, and then find the sounds from among my
collection of 300-500 to realize that gesture.

My first attempt was a system built in LISP, as part of a
larger system made for my work Sand. Sand’s concrète
layer worked well, and was a successful “proof of
concept,” of the ideas I had been toying with in my head
since Duude and Ow were composed. However, these LISP
tools lacked an interface of any sort, and at this point, I
really knew nothing about how database systems were
built, so the programming was rather clumsy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
ICMC2010, June 1-6, 2010, Stony Brook, NY
Copyright remains with the author(s).

In 2004 I began working as a database programmer
using FileMaker Pro. For those not familiar with
FileMaker, it can roughly be described as a GUI-driven,
all-in-one (structural and UI-design tool) database design
application, complete with its own scripting language; a
sort of MAX/MSP of database design, if you will (one
view even involves ‘patching’ data tables together in a very
similar fashion to what one does with MAX/MSP objects.)
I instantly saw the possibility of realizing, in a more user-
friendly and cleanly-programmed form, the ideas I had put
to work in Sand’s LISP engine. In 2007, I received a grant/
residency from Harvestworks in New York City to work on
this project. The initial result was my composition Harvest
Kitchen, and the system itself, which I used extensively in
realizing the work. After composing Harvest Kitchen, I
composed the smaller work (Divertimento in Eb) using the
same sound bank and set of tools. Currently in process is
Harvest Kitchen Part II, which continues to expand on the
materials and processes discussed in this paper.

3.The System
3.1.Modules
The system consists of 4 modules: Sound Data Storage,
Gestural Scoring, Gestural Realization, and Output.

3.2.Sound Data Storage Module
The Sound Data Storage module consists of a set of data
tables to hold data about soundfiles. There are 10
parameters for each soundfile record (See Figure 1). Most
of the parameters have a numerical range between 1 and 7.
This might seem rather coarse: that is intentional. The
system works best with a very heterogeneous bank of
source sounds, but because of that heterogeneity, it is
difficult to compare sounds with any degree of exactitude.
We can say for sure that the attack hardness of a hammer
hitting a nail is a lot greater than the attack hardness of,
say, a field recording of crickets at night, but how does the
attack-hardness of that field recording compare with the
attack-hardness of a wispy tweet from a dove? I thought
originally of making the parameters go simply from 1-3,
(low-medium-high), but in the end, 1-7 seemed like a
workable compromise that would allow for some
ambiguity and room for error.

Parameters of special note include: PC, (pitch-class),
which I separated out as a different parameter from [pitch-]
register for maximum compositional flexibility later on,
and which can be noted in any equal-temperament,
(important for me given my interest in microtonal music);
and Material/Category/Semiotic, where one can ‘tag’ a
sound with any one or more words (description of the
action taken to make the sound, the material of the object
making the sound, and so on) in order to group it with
other sounds—in the example we see “Gesture”,
“Grunge”, “Scrape”, and “Squeak.”

Figure 1. The Sound Data Storage and Entry Module

For some parameters, there is the possibility of multiple
values. In the example shown in Figure 1, scraping the
stove created spectral energy at the low end (2) and the
high end (6) of the audio spectrum. I therefore assigned to
this sound registers 2 and 7. Another familiar example of a
type of sound (not shown in Figure 1) involving more than
one value in a parameter is a sound in which one hears
more than one prominent “pitch-class.”

In thinking through many possibilities, I have found that
these 10 parameters cover all or most of the possible
sounds I use. On occasion people have mentioned
parameters not covered here, but in most cases they are
accounted for as hybrids or combinations of the parameters
found in the system already.

3.3.Gestural Engine
Having entered data on the sounds in the sound bank, one
can proceed to the most interesting part of the system: the
compositional tools.

The basic concept is as follows: one begins with an
abstract idea for a sonic gesture, which I call a model; a
model consists of one or more elements, or soundfile-
specifications, in the gesture. A given model, when
realized, can produce one or more sequences – actual
sequences of specific soundfiles, elements now realized as
specific events. From such a sequence we can produce a
mix-file. The system currently renders mix-files as XML
which can be used with the Ardour open-source mixing
application.

Figure 2. A graphical score, an idea for a sonic gesture

Let us look at an example. Figure 2 shows a sketch of a
sonic gesture. We now need to define each sound element
in this gesture more specifically. For example we begin
with a sound, which, most importantly, should be of a
relatively soft attack-hardness (within a range of 1-3, for
example), and medium noisiness (probably 3-5). In the
sketch, the 32nd-notes will be interpreted as sounds with a
short duration (<1.5’), register according to position on
the page (sort of), hard attacks (5-7), and low Agitation
(1-3) (in other words, hit and let ring). Similar
determinations of necessary parameters are made for the
other sound events in the gesture. It is not necessary, and
almost never desirable, that a value for every parameter be
entered for an element. (In fact, as I quickly discovered
even with the LISP version of this system, the reverse is
the case: for the most successful results, one should specify
an element with as few parameters as possible.) Having
carefully thought through the sound events in the sketched-
out gesture, we can then translate them into actual
elements within a model. Figure 3 shows the list of
elements on the left, and 1 (highlighted) element’s
parameters on the right.

Figure 3. The same data, entered as a model into the system.
Notice the left 2 columns in the left most list in Figure

3. These specify a range for the start-time of an element.
The actual start-time of a realized event will be randomly
chosen between these values (To specify an absolute or
determinate time, just put the same value in both fields).

Once we hit the “Realize Sequence” button, the
database system will find sounds in the sound bank whose
parameters match those specified in the model’s elements.

Figure 4. The model in Figure 3 now realized as a sequence.
In most cases, more than one soundfile will satisfy the

requirements of a given element; therefore, many different
realized sequences are possible for any given model. One
can realize as many sequences as one wants. One can also
check over the chosen soundfiles in the sequence-view
window (see Figure 4) and re-calculate one or more of the
elements (clicking the curly-arrow symbol, 4 columns

from the right side), in case you need to just fix one or two
events in a given mix which was otherwise satisfactory.

Once you’ve reviewed the component soundfiles, and
you think a sequence will work, (or at least, has potential),
you can hit the “Realize As Ardour Mix” button to create
the Ardour file.

Figure 5. The sequence in Figure 4 realized as a mix in
Ardour.

Figure 5 shows an Ardour-realized mix of the gesture,
model and sequence given above. When the system creates
a mix, sounds are randomly placed into one of 8 or more
tracks, which are arranged, in the mixing window, from top
to bottom, corresponding to stereo position from left to
right. Once the mix is loaded into Ardour, one can adjust
rhythm, timing and stereo position, add processing, and so
forth.

3.4.Some Additional Features and Fallout
A few small features were added as I put the system to use
composing Harvest Kitchen and later in the Divertimento.
It’s possible to ask for a completely random soundfile by
not specifying any parameters for a given element. Hence,
the method I used to compose much of Duude and Ow, My
Head (‘junk sculpting’ with random sub-collections of
sounds) is still possible with this system.

Another feature I implemented soon after starting to use
the system was a ‘used’ field that will tell you how many
times a given sound is used in all of the realized sequences
in the database. In the sequence view, (see Figure 4) one
can consult the 4th field from the left; one might notice, for
example, that a given sound has been used 19 times, and
then opt to re-calculate it, hopefully choosing a lesser-used
sound in the database. Many composers of concrète music
desire to keep close control over the repetition of specific
soundfiles; this calculation field helps with that task. After
composing the Divertimento, I made this part of the engine

itself: by default, it always chooses among the least-used
sounds that fit the parameters asked for.

Recall the first 2 columns in the left list in Figure 2:
these were the minimum and maximum start-time for an
element. I added a few features with which to quickly
manipulate rhythm: for example, if one decides that
‘tempo’ of a model needs to be a bit faster, one can
multiply all the start-times by a factor of .83, for example,
to get the desired effect.

4.Future Plans and Conclusion
The system is not complete and continues to grow and
change. A top future programming priority is to set up
some sort of GUI “scoring” system for entering the model/
element data. It is hard to know exactly what such a score
would look like. It would be hard enough to assign 10
different visual “dimensions” to the 10 parameters, but the
problem is, as I mentioned above, for any given element,
usually you don’t care about most of the parameters, only
one or two of them. So any scoring system should show
values for only the parameters attached to a given element
—only the parameters that the user “cares” about in
choosing that sound from the collection. Thus, for
example, assigning vertical visual height to pitch, as is
traditional in musical scores, is misleading—sometimes we
don’t care what the pitch is, as long as the selected sound
has, say, a very hard attack. In that case, we don’t want a
vertical dimension aspect to “mean anything”—we don’t
want information displayed that is not relevant to the kind
of sound we are seeking through the agency of that
element.

Currently, entering sounds into the database is done
manually. Another programming priority for this system is
to set up automated analysis to determine some or all of
the 10 parameters for sounds in a collection, and thereby
cut down on data entry. The sound collections I use are
typically extremely heterogeneous, however, which would,
I believe, make this difficult (and/or render the results of
such automation more or less useless).

I would also like to see the system output files for other
mixing systems besides Ardour (such as Logic, DP, or even
Pro Tools), although I have been quite impressed with
Ardour and am very happy to be contributing something its
growing community of users. Ardour keeps getting better
and better, and I hope that the application I describe in this
paper provides yet another reason for people to think about
using it.

Finally, although until recently most of my concrète
music uses little or no processing, I have been easing up on
that aesthetic stance lately, and in fact the gesture engine
now outputs scores for the RTCMIX package, in order to
accomplish some simple processing such as transposition,
filtering, delays, etc. In fact, in the Divertimento, there is
already quite a bit of processed sound to be heard.

